Cascading transcriptional effects of a naturally occurring frameshift mutation in Saccharomyces cerevisiae


Brown, KM, CR Landry, DL Hartl, and D Cavalieri. 2008. “Cascading transcriptional effects of a naturally occurring frameshift mutation in Saccharomyces cerevisiae.” Mol Ecol 17: 2985-97.

Date Published:



Gene-expression variation in natural populations is widespread, and its phenotypic effects can be acted upon by natural selection. Only a few naturally segregating genetic differences associated with expression variation have been identified at the molecular level. We have identified a single nucleotide insertion in a vineyard isolate of Saccharomyces cerevisiae that has cascading effects through the gene-expression network. This allele is responsible for about 45% (103/230) of the genes that show differential gene expression among the homozygous diploid progeny produced by a vineyard isolate. Using isogenic laboratory strains, we confirm that this allele causes dramatic differences in gene-expression levels of key genes involved in amino acid biosynthesis. The mutation is a frameshift mutation in a mononucleotide run of eight consecutive T's in the coding region of the gene SSY1, which encodes a key component of a plasma-membrane sensor of extracellular amino acids. The potentially high rate of replication slippage of this mononucleotide repeat, combined with its relatively mild effects on growth rate in heterozygous genotypes, is sufficient to account for the persistence of this phenotype at low frequencies in natural populations.


Brown, Kyle MLandry, Christian RHartl, Daniel LCavalieri, DuccioengResearch Support, Non-U.S. Gov'tResearch Support, U.S. Gov't, Non-P.H.S.England2008/04/22 09:00Mol Ecol. 2008 Jun;17(12):2985-97. doi: 10.1111/j.1365-294X.2008.03765.x. Epub 2008 Apr 18.

Last updated on 05/12/2015