A combined molecular and cytogenetic approach to genome evolution in Drosophila using large-fragment DNA cloning

Date Published:

Mar

Abstract:

Methods of genome analysis, including the cloning and manipulation of large fragments of DNA, have opened new strategies for uniting molecular evolutionary genetics with chromosome evolution. We have begun the development of a physical map of the genome of Drosophila virilis based on large DNA fragments cloned in bacteriophage P1. A library of 10,080 P1 clones with average insert sizes of 65.8 kb, containing approximately 3.7 copies of the haploid genome of D. virilis, has been constructed and characterized. Approximately 75% of the clones have inserts exceeding 50 kb, and approximately 25% have inserts exceeding 80 kb. A sample of 186 randomly selected clones was mapped by in situ hybridization with the salivary gland chromosomes. A method for identifying D. virilis clones containing homologs of D. melanogaster genes has also been developed using hybridization with specific probes obtained from D. melanogaster by means of the polymerase chain reaction. This method proved successful for nine of ten genes and resulted in the recovery of 14 clones. The hybridization patterns of a sample of P1 clones containing repetitive DNA were also determined. A significant fraction of these clones hybridizes to multiple euchromatic sites but not to the chromocenter, which is a pattern of hybridization that is very rare among clones derived from D. melanogaster. The materials and methods described will make it possible to carry out a direct study of molecular evolution at the level of chromosome structure and organization as well as at the level of individual genes.

Notes:

Lozovskaya, E RPetrov, D AHartl, D LengHG00357/HG/NHGRI NIH HHS/HG00750/HG/NHGRI NIH HHS/Comparative StudyResearch Support, U.S. Gov't, P.H.S.GERMANY1993/03/01Chromosoma. 1993 Mar;102(4):253-66.

Last updated on 05/20/2015